Apo2L/TRAIL inhibits tumor growth and bone destruction in a murine model of multiple myeloma.

نویسندگان

  • Agatha Labrinidis
  • Peter Diamond
  • Sally Martin
  • Shelley Hay
  • Vasilios Liapis
  • Irene Zinonos
  • Natalie A Sims
  • Gerald J Atkins
  • Cristina Vincent
  • Vladimir Ponomarev
  • David M Findlay
  • Andrew C W Zannettino
  • Andreas Evdokiou
چکیده

PURPOSE Multiple myeloma is an incurable disease, for which the development of new therapeutic approaches is required. Here, we report on the efficacy of recombinant soluble Apo2L/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to inhibit tumor progression and bone destruction in a xenogeneic model of human multiple myeloma. EXPERIMENTAL DESIGN We established a mouse model of myeloma, in which Apo2L/TRAIL-sensitive RPMI-8226 or KMS-11 cells, tagged with a triple reporter gene construct (NES-HSV-TK/GFP/Luc), were transplanted directly into the tibial marrow cavity of nude mice. Tumor burden was monitored progressively by bioluminescence imaging and the development of myeloma-induced osteolysis was measured using high resolution in vivo micro-computed tomography. RESULTS Tumor burden increased progressively in the tibial marrow cavity of mice transplanted with Apo2L/TRAIL-sensitive RPMI-8226 or KMS-11 cells associated with extensive osteolysis directly in the area of cancer cell transplantation. Treatment of mice with recombinant soluble Apo2L/TRAIL reduced myeloma burden in the bone marrow cavity and significantly protected against myeloma-induced osteolysis. The protective effects of Apo2L/TRAIL treatment on bone were mediated by the direct apoptotic actions of Apo2L/TRAIL on myeloma cells within the bone microenvironment. CONCLUSIONS This is the first in vivo study that investigates the efficacy of recombinant Apo2L/TRAIL on myeloma burden within the bone microenvironment and associated myeloma-induced bone destruction. Our findings that recombinant soluble Apo2L/TRAIL reduces myeloma burden within the bone microenvironment and protects the bone from myeloma-induced bone destruction argue against an inhibitory role of osteoprotegerin in Apo2L/TRAIL-induced apoptosis in vivo and highlight the need to clinically evaluate Apo2L/TRAIL in patients with multiple myeloma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Osteoprotegerin is a soluble decoy receptor for tumor necrosis factor-related apoptosis-inducing ligand/Apo2 ligand and can function as a paracrine survival factor for human myeloma cells.

Myeloma cells grow only in the bone marrow closely associated with bone,suggesting that this microenvironment provides critical signals for their growth and survival. Osteoprotegerin (OPG) is a member of the tumor necrosis factor (TNF) receptor family, which binds to the ligand for receptor activator of nuclear factor kappa B and inhibits bone resorption. However, it is unclear whether OPG can ...

متن کامل

Human Myeloma Cells Ligand and Can Function as a Paracrine Survival Factor for Necrosis Factor-related Apoptosis-inducing Ligand/Apo2 Osteoprotegerin Is a Soluble Decoy Receptor for Tumor

Myeloma cells grow only in the bone marrow closely associated with bone, suggesting that this microenvironment provides critical signals for their growth and survival. Osteoprotegerin (OPG) is a member of the tumor necrosis factor (TNF) receptor family, which binds to the ligand for receptor activator of nuclear factor B and inhibits bone resorption. However, it is unclear whether OPG can also ...

متن کامل

TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications.

Multiple myeloma (MM) remains incurable and novel treatments are urgently needed. Preclinical in vitro and in vivo evaluations were performed to assess the potential therapeutic applications of human recombinant tumor necrosis factor (TNF)-related apoptosis-inducing ligand/Apo2 ligand (TRAIL/Apo2L) in MM. TRAIL/Apo2L potently induced apoptosis of MM cells from patients and the majority of MM ce...

متن کامل

Apo2l/Tumor necrosis factor-related apoptosis-inducing ligand prevents breast cancer-induced bone destruction in a mouse model.

Breast cancer is the most common carcinoma that metastasizes to bone. To examine the efficacy of recombinant soluble Apo2 ligand (Apo2L)/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) against breast cancer growth in bone, we established a mouse model in which MDA-MB-231 human breast cancer cells were transplanted directly into the marrow cavity of the tibiae of athymic nude mic...

متن کامل

Adriamycin sensitizes the adriamycin-resistant 8226/Dox40 human multiple myeloma cells to Apo2L/tumor necrosis factor-related apoptosis-inducing ligand-mediated (TRAIL) apoptosis.

The newly discovered member of the tumor necrosis factor superfamily, Apo2L/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), has been identified as an apoptosis-inducing agent in sensitive tumor cells but not in the majority of normal cells, and hence it is of potential therapeutic application. However, many tumor cells are resistant to Apo2L/TRAIL-mediated apoptosis. Various ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 15 6  شماره 

صفحات  -

تاریخ انتشار 2009